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Abstract 
 

Current traffic light control systems treat all vehicles the same. Trucks however have 

different dynamics than passenger vehicles. They take a longer distance to stop, have 

lower acceleration rates, have bigger turning rates that cause bigger traffic disturbances 

consume more fuel and pollute more. These dynamic differences create delays at 

intersections that affect the travel time of all vehicles involved and may have a negative 

effect on the environment if not taken into account by traffic control systems.  

In this report we consider the problem of taking into account the presence of trucks in 

controlling the traffic lights at intersections with the objectives of minimizing delays for 

all vehicles involved and reducing pollution. The problem was motivated from the 

observation that in many cases it is better for all vehicles involved to extend the green 

cycle in order to have a heavy truck cross instead of forcing it to stop and restart again. 

The system is similar to the bus priority system that currently operates in many cities 

except that in the case of trucks the objective involves benefits for all vehicles than just 

the trucks involved. We proposed two different controllers for the truck signal priority 

problem: a neural network-based controller and one based on integrated priority 

strategies. The first controller is based on the use of a neural network approach to model 

the vehicle delays by distinguishing between different classes of vehicle and the use of 

optimization to reduce the vehicle delays by properly controlling the lights. The 

controller is adaptive since the delay prediction model is updated once new data is 

obtained from the infrastructure. The second controller is similar to the bus priority traffic 

light approach and uses a combined passive and active strategy in order to minimize 

delays. The similarity with bus priority is that it gives priority to trucks in certain 

situations if such an action benefits the overall system. In the case of bus priority the 

objective is to give priority to busses without optimizing for the delays of all vehicles 

involved. Both controllers have been evaluated using a microscopic traffic flow model 

for a single intersection and a network of intersections. 
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1 Introduction 
 

Trucks have a detrimental impact on traffic flows, especially at intersections, because of their 

slow dynamics, large size and high emissions [1]. The time for a heavy truck to respond to a 

traffic light, accelerate and cross the intersection is much higher than that of normal passenger 

cars [2]. However, today’s traffic lights do not take into account the presence of trucks but instead 

treat them as other vehicles for traffic light control purposes. With new sensor, communication 

and GPS technologies, a traffic light at an intersection could be informed of the approach of 

different vehicles and their characteristics (class, position, dynamics, speed etc.) [3-5]. The traffic 

signal controller could take into account the differences of vehicle dynamics between trucks and 

passenger cars in an effort to achieve better performances in terms of reducing traffic delays for 

all vehicles. For example under certain conditions it may be beneficial to all vehicles involved  to 

give priority to certain vehicles, such as trucks, that take longer to decelerate and accelerate. The 

approach is similar to bus priority that is currently in use in many cities except that the objectives 

are different. In the case of busses the objective is to minimize the travel time or maximize the 

passenger throughput, whereas in the case of truck priority is to give priority to trucks in cases 

that all other vehicles will benefit too.  Recent efforts with traffic signal control and priority 

systems, especially bus priority systems that give priority signal to buses [5-9] and adaptive signal 

control systems that adaptively respond to changes in traffic patterns [10-21], while giving 

priority to some special  classes of vehicles.  

There are two main priority strategies for control of signalized intersections: passive priority and 

active priority. Passive priority does not require an active communication between vehicles and 

signal controller and is implemented based on past knowledge of traffic flows and patterns, such 

as traffic volumes, approaching speeds, vehicle composition of every direction and turns. The 

passive priority system gives longer green time to priority directions [6][7]. Active priority 

requires the detection of approaching trucks and the subsequent priority request-response 

bidirectional communication between vehicles and signal controllers [5][8]. Reference [9] 

proposes a framework of integrating passive priority and active priority together to realize bus 

priority.  
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Adaptive Traffic Control Systems (ATCS) are traffic management systems, which adjust the 

timing of traffic signals to adapt to changing traffic patterns and ease traffic congestion. In such 

systems, a performance index (PI), e.g., overall delay, number of stops, queue lengths, fuel 

consumption or a combination of these parameters, is minimized [10]. ATCS optimize traffic 

flow on arterial networks with multiple signalized intersections. SCOOT [11] and SCAT [12] are 

prominent and well established ATCS. Systems such as MOTION [13] and BALANCE [14] are 

good examples of ATCS.  Improved traffic modeling techniques developed in the recent years 

together with the  increase in computation power encourage developments of more sophisticated 

ATCS. SCOOT minimizes the average queues by adjusting the signal timings and continuously 

measuring traffic volumes. The potential timing plans are evaluated heuristically to adjust the 

signal timings. Both SCOOT and SCAT suffer from inefficient handling of saturated conditions 

due to inadequate real-time adaptability [15].  LHOVRA[16,17], OPAC (Optimized Policies for 

Adaptive Control)[18][19], and RHODES (Real-time Hierarchical Optimizing Distributed 

Effective System)[20] are other examples of traffic light controllers. LHOVRA can support 

limited priority functions in isolated intersections based on road vehicle detectors. The OPAC 

system could give priority to certain vehicles, such as emergency vehicles, if they are operating  

on restricted lanes. RHODES implements traffic signal control with a MPC (Model Predictive 

Control) methodology and the priority is realized by giving weights to different vehicles. Traffic-

responsive urban control (TUC) is another adaptive control strategy [21]. Based on a store-and-

forward modeling of the urban network traffic and using linear-quadratic regulation theory, the 

design of TUC leads to a multivariate regulator for traffic-responsive, coordinated network-wide 

signal control that is also particularly suitable for saturated traffic conditions. Real-time decisions 

in TUC cannot be taken more frequently than at the maximum employed signal cycle. The 

strategy will need to be redesigned in the case of modifications and expansions of the controlled 

network. TUC was compared with a fixed-time signal control and shown to lead to reduction in 

total waiting time and total travel time in the system. Many optimization and intelligent control 

algorithms have been used in these traffic light control systems, including fuzzy logic [22], neural 

network [23], cell transmission model [24][25], dynamic programming [26], Genetic Algorithm 

(GA) [27][28] and Q-learning [29][30]. The optimization techniques [26-30]  involve a search for 

the optimal signal sequence using traffic flow information and can be used for truck priority 

systems.   
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In a large network, the isolated traffic light control of each intersection without taking into 

account the traffic situation in the network and how other traffic light intersections are controlled 

may lead to unnecessary congestion in the network. Therefore, in order to optimize the traffic 

flows effectively, we need to consider the traffic situation and state of the adjacent intersections 

for each individual intersection. The dependency of traffic volumes at each intersection on its 

neighbors makes it difficult to set the signal timings for a large traffic network with multiple 

intersections. An interesting approach to deal with this traffic signal control problem is to use a 

distributed control technique involving multiple agents. The goal of a multi-agent control system 

is to reduce the traffic congestion for multiple intersections simultaneously. For effective traffic 

signal control, such controllers need to adapt themselves continuously. De Oliveira and 

Camponogara [31] proposed a network of distributed agents to control linear dynamic systems 

which are put together by interconnecting linear subsystems with local input constraints. The 

framework decomposes the optimization problem obtained from the model predictive control 

approach into a network of coupled and small sub-problems to be solved by the agent network. 

Each agent senses and controls the variables of its intersection, while communicating with agents 

in the neighborhood to obtain variables and coordinate their actions. The proposed approach 

achieved performance comparable to the TUC system. A real-time traffic controller is proposed 

in [32] using a distributed network of agents. The online learning and update process for each 

agent is improved by designing a stochastic cooperative parameter update algorithm. In another 

study [33], a collaborative reinforcement learning (RL) algorithm is employed  using a local 

adaptive round robin phase switching model at each intersection. Each intersection collaborates 

with adjacent agents in order to learn appropriate phase timings. In [34], a multi-agent RL was 

designed to optimize traffic signals at multiple intersections. The RL systems are trained using 

the waiting times for vehicles and different settings of the traffic signals. The results presented in 

[35] show that the proposed algorithm outperforms non-adaptive traffic light control systems.. 

In this report, we extend the concept of bus priority and adaptive signal control system techniques 

to traffic light control with truck priority. In the case of bus priority, the system objective is to 

reduce delays of buses at signalized intersections irrespective of the traffic in opposite directions 

whereas the truck priority system is motivated by the objective of reducing the overall traffic 

delay and environmental impact. In contrast to bus priority, the truck priority faces the following 

challenges: 1) The arrival frequency of trucks is much higher than that of buses especially in the 



4 
 

neighborhoods of cargo ports, warehouses, markets, etc.; 2) The trucks do not have relatively 

fixed schedules as buses. Therefore, the truck arrival time for one intersection cannot be 

accurately predicted until it enters the controlled road network and its route has been assigned; 3) 

The priority level of trucks is lower than that of buses, allowing the flexibility to consider the 

impact to traffic in other directions.  

With the advancement of drayage optimization and real time routing as well as connected vehicle 

technologies the accuracy of truck arrival times at intersections will improve.  

We propose a truck priority system that integrates passive priority and active priority request-

response strategies to give passing priority to trucks without causing additional delays to traffic in 

other directions. Passive priority strategy provides an optimized baseline signal for active priority 

strategy with a simulation-based optimization algorithm using detected or historical traffic 

information such as vehicle flow volumes, speeds and compositions. On the other hand, the active 

priority strategy responds to real time priority requests from approaching trucks and decides to 

grant or refuse the requests based on traffic conditions. By timing the traffic signals to give 

priority to trucks when trucks are present, we can achieve two benefits. First, the trucks will clear 

the intersection faster without having to make frequent stops that introduce additional delays due 

to their stopping and acceleration time. Second, the less decelerations/accelerations a truck goes 

through the less fuel it consumes and the less pollution it generates. Such traffic light priority may 

also have a beneficial effect on the travel time of passenger vehicles due to elimination of delays 

caused by trucks stopping and going. Our analysis of the proposed systems reveals these benefits 

and possible tradeoffs. 

This report is organized as follow. Section 2 introduces the differences of characteristics between 

trucks and passenger cars. Section 3 proposes the design of our truck priority systems at 

signalized intersections. Section 4 shows the evaluation results of proposed systems on a practical 

road network. The conclusions are given in Section 5. 
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2 Vehicle Characteristics at Traffic Lights 
 

In traffic engineering, the allowable lengths of vehicles can be significantly different. The length 

of a passenger car is usually about 20 ft while the truck length is from 35 to 80 ft [1], i.e., the 

length of a truck is about 1.5 – 4 times the length of a passenger car. Table I shows the 

acceleration rates of a typical passenger car and truck [2]. As shown in the table, the acceleration 

of a typical truck is much lower than that of typical passenger car. Therefore, a truck requires a 

longer time to resume its full speed after stopping and more deceleration distance to stop before a 

red light at intersections in comparison to other vehicles with higher deceleration and acceleration 

capabilities, like cars (as shown in Fig. 1). The traffic delay generated by truck stops is much 

larger than the delay of same number of car stops due to slow dynamics of trucks.  

Table 1:  Acceleration rates of typical car and truck [2] 

Speed Range (mph) 

Acceleration Rates (ft/sec2) 

Passenger Car Typical Truck 

0 – 20 7.5 1.6 

20 – 30 6.5 1.3 

30 – 40 5.9 0.7 

40 – 50 5.2 0.7 

50 – 60 4.6 0.3 

 

Speed

Position

Truck

Car

 

 

Figure 1:  Comparison of Truck and Car Dynamics 
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Figure 2:  All car flow at an intersection 
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Figure 3:  Flow with a truck at an intersection 

 

If cars stopped behind a truck at a red traffic light, their acceleration and speed when the traffic 

light becomes green, is dictated by the slow dynamics of the truck. Their lower speed will 

increase the delay that is the time it takes to clear the intersection.  By giving priority passing to 

the leading truck we can reduce the entire traffic delay not only for the truck but also for the 

following passenger cars. In general, by reducing the number of stops of trucks at traffic lights not 

only reduces the traffic delays for all cars involved but also has a positive impact on the  

environment since trucks produce much more air pollution than normal cars especially during 

stop and go traffic. Fig. 2 and Fig. 3 show two groups of speed profiles of an all-car queue and a 

queue with a truck (second position) before at a traffic signal respectively.  

The headway of same type of cars in a waiting queue can be expressed by the following model 

presented in [36], 
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1

n i

i

T nh


         (1) 

where 
nT  is the green time required to move a queue of n cars through the intersection in sec; 

i is the incremental headway of ith car, that is the additional headway due to driver reaction to 

green signal and vehicle acceleration. 
i = 0 when 5i  , sec ; 

 h is the saturation headway, that is the average headway that would be achieved by a saturated 

and stable moving queue of vehicles passing through the intersection if the signal was always 

green, sec. 

n is the number of cars. 

However, equation (1) will not be accurate due to the presence of a truck in the queue since the 

truck has an impact on the headways of the following vehicles due to its slow dynamics. 

Considering the above simulation results, we conclude that avoiding a truck appearing in the front 

of a stopping queue before an intersection is an efficient way to reduce travel delays for all 

vehicles involved. 
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3 Proposed Truck Signal Priority Systems 
In this report we design, analyze and evaluate two different approaches for traffic light control 

with truck priority. The first method is based on the use of a neural network system to predict 

delays and an optimization method to minimize these delays by generating the appropriate traffic 

light signal sequence. The second method combines a passive with an active approach and uses 

real time simulations together with an optimization technique to generate the signal sequence. The 

two methods are presented in the following subsections and tested and evaluated in section 4.  

3.1 Approach 1: Neural Network Based System 
 

3.1.1 System Architecture 

We propose a multi-agent distributed traffic signal controller, which incorporates the truck data 

into the optimization problem. We first develop the delay predictor model. This neural network 

based model predicts very short-term delays of all the vehicles in the network based on the 

information of the cars and trucks and also information obtained from neighboring signals. In the 

next step, we develop an algorithm to optimize the traffic delay (predicted by the neural network). 

This algorithm optimizes the next transition time of traffic signals that minimizes the delay for 

each intersection by considering the state of the adjacent intersections and, therefore, minimizes 

the overall delay of the traffic network. Fig. 4 shows the block diagram of the control scheme. A 

neural network is used to estimate the states and delays associated with the traffic lights at each 

intersection by taking into account different classes of vehicles. The estimated or predicted delays 

are used by an optimization algorithm to generate the control strategy for timing the traffic lights 

in order to minimize the delays.  

 

 



9 
 

 

Figure 4:  Block Diagram of the control scheme.  

 

The details of the approach are provided in the following subsections.  

 

3.1.2 Traffic Network Model 

 

We first start with the single intersection, and expand the model to multiple intersections. The 

delay is defined as the average of differences between the actual travel time and the free flow 

travel time with no stops or slowing (at maximum allowed speed) for all vehicles in the network. 

Delay is then predicted using a neural network model. For a single intersection we do not 

consider the state of the adjacent intersections, and the controller is the result of a convex 

optimization problem. Fig. 5 illustrates a single intersection. By feeding the information (average 

speed and number) of trucks and cars as two separate sets of inputs we guarantee that the extra 

delay contributed by trucks is considered in the model. 
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Figure 5:  Schematic showing a single intersection 

The subproblem of controlling a traffic signal in an intersection is handled by an agent. For each 

intersection we use a single layer neural network (NN) to predict the average delay of all 

vehicles. Each road link is divided into a number of segments (Fig. 6), number and average 

speed of trucks and cars for each road segment, the length of queues at each link, current status 

of traffic lights as well as the future state of the traffic lights are fed into the neural network 

model. The inputs to the NN are as follows:  

NTj: Number of trucks in segment j 

VTj: average speed of trucks in segment j (km/h) 

NCj: Number of cars in segment j 

VCj: average speed of cars in segment j (km/h) 

LQi: length of queue at link I (m) 

Si: current state of traffic signal (green/red) 

S’: future state of the traffic signals (transition time of signals in seconds) 

Fig. 6 shows the structure of the neural network used to model the time delay: 
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Figure 6:  Structure of the neural network model to predict the overall delay of the network based on the vehicles information, 
current state of the traffic signals and future state of the traffic signals. 

The delay is modeled as: 

                  (2) 

where  denotes the delay of all the vehicles for the next time period d at time step k,  

denotes the input vector at time step k defined as , and  is the future 

transitions of signal at time step k for the same time period. N denotes the number of hidden units 

in the Neural Network,   is a  vector which consists of the 

weights of the NN,   is the input vector, and   is the logistic 

function. The weights  are updated online by backpropagation using the gradient descent 

method [19]: 

               (3) 

where   is the new performance surface and  is the dynamic learning rate. Traffic light 

control relies on finding the arguments   which minimizes the delay with respect 

to constraints on minimum and maximum green light cycles. We describe the solution 

methodology in the next section after introducing the multi-intersection scheme. 

 

Expanding the single-intersection model involves introducing new inputs to the delay model. As 

explained in the introduction, to control each signal efficiently, we need information from 



12 
 

adjacent signals in addition to the local traffic data. Figure 7 illustrates the NN with the new 

parameters. 

 

 
Figure 7:  Schematic and neural network structure for predicting delay in the multi-intersection model. Information from 

adjacent intersections are fed into the network in addition to the local traffic data. 

 

The training of the NN is similar to the single intersection. After the model is trained, a 

prediction of the model can be made using: 

   (4) 

where the index  i denotes the intersection and the subscript a means the variable belongs to the 

adjacent intersections. 

3.1.3 Controller Design and Control Algorithm 
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At each time step, agents decide about the next few transitions of the controlled signal. The 

decision involves finding the argument to minimize the sum of delays of all intersections 

simultaneously: 

 

                             (5) 

where  and  denote the minimum and maximum green/red time,  denotes the green time 

for each route, and I is the total number of intersections. Since  is the information vector 

obtained from infrastructure and known to the controller at the decision making time we can 

rewrite equation (5) as, 

 

                (6) 

Since the neural network model is a sum of sigmoidal functions, we have: 

                      (7) 

where   is the state vector of the whole network, and  is the logistic function. 

Note that . By defining  the optimization problem becomes:  

 

                                 (8) 

where I denotes the total number of network agents, and N is the number of hidden units for each 

agent. At each time step the optimum set of signal transition times is obtained by solving the 

above optimization problem. Equation (8) is a linear constrained general nonlinear optimization 

problem which consists of a sum of sigmoidal functions. The functions are not separable in the 

current form, and thus, solving it is not a trivial task. By using the following linear 

transformation we obtain a set of separable functions.  
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                                       (9) 

where  denotes the new state vector, and 

 is a  matrix, where   is the number of states for 

each agent. Then the problem becomes: 

 

                         (10) 

which is a separable nonlinear optimization. The final set of optimization problems reduces to: 

 

                          (11) 

where are the new sets of constraints obtained by the linear transformation. Note that 

, and, depending on the sign of  ,  is a strictly increasing or 

strictly decreasing function, given  or  respectively, since  is a strictly 

increasing function. Therefore,  

                                      (12) 

where  is the optimum transformed state vector. The actual state vector is obtained by, 

                                         (13) 

In order to have a unique and invertible transformation the number of states (future transitions of 

signals) must be equal to the number of hidden units for each agent. In this case, W is a square 

matrix with non-zero elements on the diagonal. As discussed in the results section the accuracy 

of the delay prediction improves as the number of hidden units increases. However, there is a 

trade-off between the accuracy of prediction and the processing time. Our simulation results 

discussed in the results section show that the number of hidden units between 5 and 11 is a good 

choice in terms of both accuracy and processing time.  

The control procedure of the whole network consists of the following steps: 

Step 1: At time step k, generate the control vector  by solving the optimization problem (8). 
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Step 2: modify the control vector by taking a weighted average of the current and previous 

decisions: 

          (14) 

Step 3: apply the modified control vector to the signals in the network. 

Step 4: update the weights of the model (4). 

Step 5: return to step 1 at time step k+1. 

By applying the above control algorithm, at each time step, the future transitions of the signals 

are updated by progression of time. Fig. 8 shows an example of signal timing progression 

generated by simulation: 

 

Figure 8:  Sample results for traffic light transitions at a junction using the above control strategy.  

The horizontal axis of Figure 8 shows the planned transitions for the next 2 minutes which are 

made at time 0 based on the traffic state observed at the moment. The vertical axis shows the 

times at which the 2 minutes ahead predictions are updated. For example at time step 5 (vertical 

axis), based on the developments in the traffic situation, the transition plan is updated which is 

illustrated on the second horizontal row. The adjustments at each decision time are made by 

taking a weighted average of the 3 previous decisions to prevent abrupt changes to the plan. 

 

3.2 Approach 2:  Integrated Truck Priority Strategies System 
 

3.2.1 System Architecture 

There are two main priority strategies at signalized intersections: passive priority and active 

priority [5] [8].  Passive priority does not require an active communication between vehicles and 
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signal controller and is implemented based on past knowledge of traffic flows and patterns, such 

as traffic volumes, approaching speeds, vehicle composition in all  directions and turns. The 

passive priority operation is realized by giving longer green time to the directions that have larger 

volumes or more trucks in order to improve traffic condition, reduce total delay and the number of 

stops as well as environmental emissions. Active priority requires the detection of approaching 

trucks and the subsequent priority request-response bidirectional communication between trucks 

and signal controllers. Fig. 9 gives an overview of the proposed truck priority system. The system 

architecture has the following modules: 

• Traffic flow observer; This module works in the network level to observe the state of the 

controlled road network for priority modules with detection techniques and active communication 

between vehicles and signal controllers. It provides traffic flow information for two priority 

modules. This module provides the traffic flow information for passive priority module (link 

traffic flow volumes, compositions, etc.) and detects the priority requests and queue lengths at the 

controlled intersections for active priority module. 

• Passive priority module; This module works in the multi-intersection level. It generates 

optimized baseline signal plan for the active priority module using the observed traffic flow 

information.  

• Active priority module; The module works in the intersection level under the assumption 

that there is a continuous communication between trucks and signal controllers. This module 

receives the priority requests from approaching trucks then makes priority decisions based on the 

baseline signal and real time traffic conditions.  

• Signal generation module; outputs operation signal timing based on the baseline signal 

and priority decisions. 
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Figure 9:  Architecture of proposed truck signal priority system. 

 

3.2.2 Passive Priority Module Design 

 

The passive priority module provides an optimized baseline signal to improve given performance 

criteria. MPC (Model Predictive Control) approaches have been applied in many practical 

systems such as RHODES and OPAC [16-20]. A MPC based intersection signal optimization 

approach  needs a traffic flow model that makes predictions of future traffic state, an 

optimization technique to find optimal signals for intersections under required constraints, and 

performance criteria to improve [16][18][20].  However, it faces many difficulties. First, the 

traffic flow model is hard to formulate accurately because the traffic on a road network having 

signalized intersections is nonlinear and time variant. Moreover, the performance criteria such as 

traffic delay, number of stops, or environmental impact are not explicit functions of traffic flows, 

making performance predictions difficult. As a result, the control performance is limited by 

traffic model formulation and non-explicit objective functions. 

We propose a simulation based control approach to find the optimal baseline signals for active 

priority module based on continuously measuring road traffic flows as shown in Fig. 10.  In this 

approach, the traffic simulator is used to predict future traffic states and performance criteria 

instead of mathematical models used in MPC approaches. This approach has several advantages: 

1) the traffic simulator can predict traffic flows accurately in a fast forward manner given 

estimated traffic demands; 2) the performance costs are easily obtained from the simulation 
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results. However, this simulation-based approach faces a time complexity problem because of 

the required traffic simulation time and becomes computationally intractable when the size of the 

controlled road network increases. In order to handle the scalability and computation problem the 

controlled road network is divided into a group of subnetworks of much lower complexity and a 

multi-agent simulation based control technique is used to solve the optimal problem.  
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Figure 10:  Simulation-based passive priority 

Consider a road network with n agents. Let i

tX 1,...,i n  denote the local traffic state of 

subnetwork i at time step t. Then  1 2: , ,..., n

t t t tX X X X  denotes the local states of all agents that is 

also the global state of the road network at time t. Let ,  1,..., ,i

tU i n  denote the control input of 

control station i, i.e., the signal settings of all signalized intersections in the agent area. 

 1 2: , ,..., n

t t t tU U U U  denotes the collection of all control inputs at time t. During the control process, 

each agent controller i observes the global network state 
tX by combining its local state and 

states of other agents, as well as the one-step delayed control inputs 1tU   of all agents. Then each 

local agent controller i generates the optimal control input i

tU based on the state prediction 

generated by the traffic simulator. 

The agent traffic states from t to t + p are predicted using the traffic simulator and the optimal 

control input is generated by optimizing the cost function of performance criteria where p is the 

prediction time step. In summary, the problem is formulated as follows: 

 1 1, , ,i i i i

t t t t tX f X U U W                   (15) 

 : :arg min ,
i
t

i i i i

t t t p t t p
U

U c X U      (16) 
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and 

 : : :, =i i i T i

t t p t t p t t pc X U P        (17) 

where fi is the traffic simulator function of agent i;  Wt denotes the simulation disturbance at time 

step t; c(.) is the optimization cost function;   is the weight of performance criteria and Pi  is the 

simulated performance of agent i.  

The proposed method can accept any quantifiable performance measures  that could be generated 

by simulation results. In this report we use the sum of 1) Average delay of all 

vehicles/cars/trucks (with weights one) and 2) Average stop frequency of all vehicles/cars/trucks 

(with weights ten) as the cost function value to improve. 

Another problem is to select an optimization algorithm that searches new evaluated signal input 

and monitors the convergence of the optimization process to solve problem (16). A wide class of 

search algorithms could be applied to determine the optimal signal input. However, the gradient-

based algorithms are not suitable here because the simulation module can be seen as a black-box 

function since the explicit objective function and its derivative are unavailable. There are several 

kinds of algorithms that can be used for this problem.  

(1) Trajectory search family algorithms: Typical methods include pattern search method 

[37][38], simulated annealing, Tabu search, hill climbing method, etc. These algorithms find a 

satisfactory solution by iteratively using a local or neighborhood search procedure that moves 

from one potential solution to an improved neighbor solution. These algorithms are derivative-

free and easy to implement even for complex problems. However, they may be attracted by local 

optima and therefore can not give exact optimal solution in some cases. 

(2) Population-based family algorithms: Typical methods include Genetic Algorithm (GA), 

Genetic programming, Evolutionary programming, Ant colony algorithm, bee colony algorithm, 

etc. These algorithms do not get stuck at local optima but they can not guarantee that they will 

find the global optimum. Many papers show the applications of these algorithms in traffic control 

and optimization. [27] and [28] proposed two typical transit priority systems using GA. However, 

they need a large number of evaluations and searching rounds for one converging procedure. For 

example the minimum execution time is 4.29 hours even when using a parallel structure GA 

algorithm for an 86-intersection network [27] and the total number of evaluations is more than 
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4000 for a 12-intersection road network [28]. Therefore, evolutionary algorithms may not have a 

good performance if the number of evaluations or the required searching time is limited.  

(3)  Q-learning algorithms such as [29][30]. Q-learning algorithm generates new actions based 

on observation of old action performances and finally learns an optimal mapping between system 

states and control actions. Q-learning method is powerful when the traffic demand and network 

flows are static but not useful for dynamic traffic flows.  

 

Initialization at k = 0: 

1) Obtain the initial solution 
0x ; 

2) Select algorithm parameters: 
M, [1, ),   (0,1),  and      . 

For each time step k, do: 

1) Receive the latest optimal control inputs from other agents 
in simulation; 

2) Determine new possible search direction  1 2, ,.., nd d d d  

with GA algorithm; 
3) Run simulation to evaluate the performance of candidate 

solution with received inputs from other agents, get ( )kf x ; 

4) For each search direction 1,2,...,i n : 

      Compute directional search step i i

k k ks d  ; 

      Evaluate ( )i

k kf x s if i

k kx s  is a feasible solution; 

End for 

5) Select argmin ( )
i
k

i

k k k
s

s f x s  ; 

6) If ( ) ( )k k kf x s f x    

            Update step size 
1k k    and 1k kx x   

       Else 

            Update
1k k   and 

1k k kx x s   ; 

       Send 
1kx 
 to other agents; 

7) If 
1k   or k = M, stop algorithm, return 

1kx 
; 

End for 

 

Figure 11:  Simulation-based optimization algorithm 
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Based on the above methods, we apply a simulation based search algorithm in Fig. 11 to find the 

optimal input i

tU . The algorithm is implemented by adjusting current solution to some directions 

and then evaluating new solutions via simulations. The directions include adding/reducing green 

ratio of a phase, adding/reducing signal cycle, adding/reducing signal offsets, etc. A pattern search 

algorithm searches feasible decreasing directions and a GA algorithm generates new possible 

feasible directions based on the found feasible directions with better performance. If such feasible 

directions exist, the algorithm moves to new solutions in those directions and repeats the search 

process with increased step size. At the same time the agent will broadcast a message of its latest 

optimal input to other agents whenever a better solution exists for this agent. Otherwise, it repeats 

the search from current solution with decreased step size until reaching the objective solution 

when the step size is less than a predefined threshold value or the iteration number achieves an 

upper bound M. Since the objective function is nonlinear and non-convex, the global optimal 

solution is not guaranteed. The parameters in the algorithm are: the prediction time step p = 20 

minutes; M = 10, 2,   =0.5,  and 2    . 

3.2.3 Active Priority Module Design 

 

Fig. 12 illustrates the procedure of the active priority module that has the following stages: 

(1) Priority Request and Arrival Time Prediction 

When a truck approaches an intersection, it reports its arrival by sending information that includes 

type, length, speed, etc. to the signal controller. After the signal controller receives the request, it 

predicts the arrival time of the truck.  This arrival time is an important factor used to determine 

whether the truck needs a priority action. If the truck could report its dynamics continuously via 

active communications before it arrives at the decision position the controller could update the 

arrival time of the truck continuously and make a more accurate decision. If the traffic light is 

green when the truck arrives then it does not need a priority passing. 

(2) Priority Action Determination 

If the truck satisfies the requirements of a priority passing, the next stage is to determine which 

priority action is needed. The possible priority actions may be green extension, early green or 

phase insertion. This determination depends on the truck arrival time and the future traffic light 
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state on the truck arrival time. For example, a priority request occurred during phase 1 and this 

phase 1 is also the phase for the approaching truck to pass the intersection. But the arrival time of 

the truck is outside the green interval of phase 1. In this case, the controller needs to extend the 

green interval for the current phase 1 (case 2 in Fig. 13) in order to give priority for the truck.  

Similarly, if phase 2 is the phase for the truck however the arrival time is ahead of the starting 

time of that phase’s green state, then the controller needs to start the green state earlier than 

planned in order to give priority passing (as case 3 in Fig. 13).  As shown in Fig. 13 giving 

priority for trucks in one phase or direction has a negative impact on traffic flows in the next 

phase. Therefore, both the green extension time and earlier green time should be limited within a 

threshold time. This minimum threshold time is determined by the time required for a truck to 

travel from the priority request position to the intersection stop line. In addition, the threshold 

time is within the value of 10% cycle time which can be altered to support priority operations. 

[38]. For these reasons in this report the threshold time is chosen to be five seconds since the 

distances between the priority request positions to the intersection stop line are about 30-50 

meters in the evaluation traffic model. This threshold time is enough for a truck to travel the 

distance with normal speed and does not have negative impact on traffic flows of non-prioritized 

phases. 
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Figure 12:  Active Priority Module 
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Case 4: Phase Insertion Action 

Figure 13:  Priority action examples 

(3) Action Evaluation 

We formulate the active priority decision problem as a Markov decision problem since it is 

observable, stochastic, and sequential [39].  The state s in the decision is the set of waiting 

queues of the intersection. 

 1 2, ,..., ns         (18) 

where i is the vehicle queue in ith direction, and n is the total number of possible directions of the 

intersection; 

Assume that the priority requests from  r approaching trucks need to be processed. The priority 

decision vector can be written as: 

 1 2 3, , ,..., ra a a a a     (19) 

where 
ia is the decision of ith priority request. 

1, give the priority

0, refuse the priority
ia


 


    (20) 
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The state transition model is the system model of predicting future traffic state based on current 

state and priority action decision.  The state transition model is: 

     

1

2, , | | ,
...

in out

n

s a t f t s f t s a








 
 
   
 
  
 

   (21) 

where n is the number of directions,  |inf t s  is the vector of upstream input traffic flows that can 

be collected via road detectors at time t.  | ,outf t s a  is the vector of downstream traffic flows, i.e., 

the traffic flows leaving the intersection at time t when the traffic state s and priority action a are 

given. 

The control objective is to reduce the delay and number of stops as a result of the priority decision 

which can be measured by the integral of waiting queues of all directions from current state s of 

time t to new state s’ of time t + T where T is the time length of action a.  This reward function 

considers the traffic flows from all directions and is given as: 

 
1

, ' ( , , )
t T

a i i
t

i

R s s w s a d
T

  


      (22) 

where  , 'aR s s is the total reward from current state s to next state s’, 
iw is the weight of ith 

direction depending on the number of trucks in the queue. 

Then the optimal decision iteration is:  

( ) : arg min ( , ')a
a

s R s s             (23) 

where ( )s is the optimal decision at state s, the decision is to select the action a that minimizes 

the reward from current state s to next state s’. 

(4) Output Decision 

After evaluating the impact of priority response action, it will return a decision about granting 

priority to a truck or not. If the priority request is declined, then the following signal phases will 

not be changed. Otherwise, the signal phases will be changed to permit the truck to cross the 

intersection.  
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4 Evaluation Results 
 

4.1 Evaluation Environment 
 

This section presents the evaluation results of the proposed signal control systems on a road 

network. The proposed road network is adjacent to the Long Beach port. It  is circled by Pacific 

Coast Hwy, N Wilmington Blvd, W Anaheim St and N Avalon Blvd and consists of more than 

100 intersections in total 15 of which are signalized (see Fig. 14). The 15 intersections are 

controlled by 15 signal controllers in neural based approach 1 and controlled by three agents and 

each agent controls five intersections in system of approach 2. A microscopic traffic simulator of 

the selected road network has been implemented in VISSIM (see Fig. 15).  

The priority control algorithms are implemented in MATLAB/C++ and integrated with the 

simulation environment via COM (Component Object Model) interface [40]. 
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Figure 14:  Selected road network 
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Figure 15:  Traffic simulator of selected road network 

4.2. Training of Neural Network Delay Predictor 
 

First we evaluate the delay prediction model obtained by training the neural network. The 

training is done by using the MATLAB Neural Network Toolbox. Fig. 16 shows the prediction 

results for the multi-intersection test network. The Mean Squared Error (MSE) of delay 

predictions initially improves by increasing the number of hidden layers and nodes. On the other 

hand increasing the number of nodes beyond a certain point causes over-training and increases 

the MSE. Another important practical issue is the processing time needed to train the NN which 

is proportional to the size of the neural network. Table 2 shows the trade-off between MSE 

versus processing time for our test network. Based on the results shown in this table we choose a 

single layer network with 7 nodes. The MSE of the predictions are acceptable for this network 

and adding further layers or nodes to the model increases the processing time without 

significantly improving the error of delay prediction. 
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Figure 16:  Performance of the delay prediction model for different NN size. For 11-node network the MSE is 2.2% while for a 5-
node network the MSE increases to 7.5%. 

Table 2:  Mean Square Error and Processing Time for Neural Network 

NN Structure 
MSE 

(%) 

Process Time 

(s) 

Single-layer w/ 3 nodes 11.3 0.70 

Single-layer w/ 5 nodes 7.5 0.98 

Single-layer w/ 7 nodes 5.0 1.37 

Single-layer w/ 9 nodes 3.4 1.92 

Single-layer w/ 11 nodes 2.2 2.69 

Single-layer w/ 13 nodes 2.2 3.76 

2-layer w/ 3 nodes 10.4 1.50 

2-layer w/ 5 nodes 6.9 2.10 

2-layer w/ 7 nodes 4.6 2.94 

2-layer w/ 9 nodes 3.1 4.12 

2-layer w/ 11 nodes 2.1 5.76 

2-layer w/ 13 nodes 1.8 8.07 

 

We evaluate the performance of the proposed model with regard to the existence of 

interconnections between agents. In other words, we compare two modes; one with the use of 

communication between intersections, and one without . Fig. 17 shows the inputs used to feed 

the neural network in each case. 
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We also compare these two systems with the performance of the widely deployed actuated traffic 

signal controller, where inductive sensors are used to detect vehicles approaching the 

intersection. Our simulation results indicate the importance of communication between the 

intersections in the performance of the controller. Fig. 18-b) shows that the performance of the 

traffic signal controller is enhanced by 12% by means of communications between adjacent 

intersections and shows about 26% improvement compared to the actuated traffic signal 

controller. Also note that using a network-wise controller with intercommunications between the 

agents, the delay of the vehicles tends to be smoother compared to the delay of an actuated signal 

controller. Figure 18-a) confirms that making the agents communicate with each other helps 

reducing the prediction error.  

 

Figure 17:  The input vectors for (a) the special case which agents acts independently, and (b) the general case which agents 
consider the effects of neighboring intersections. 
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Figure 18:  Comparison of two cases; with communication between links, and without communications. (a) the MSE of the 
prediction model in the case of no-interconnections increases to 11%, where the MSE for the general case is near 5%. (b) the 
average vehicle d delays obtained by actuated traffic signal controller is 31 seconds, whereas the average delay for the locally 

optimized controller (without interconnections) is 26 seconds, and the delay for the general case (network-wise optimized) is 23 
seconds. 

 

4.3 Comparison of Proposed Systems 
 

We compared our proposed algorithms when the traffic flow in the road network is the average 

daily flow. Tables 3-5 summarize the evaluation results of different controllers when the truck 

ratio is 3%, 10%, and 20% of the overall flow respectively. As shown in the tables, both 

proposed controllers improve the network performance including delay and vehicle stops as well 

as environmental impact compared to the fixed time control that is the commonly used 

controller. Controller 2 provides less delay and number of stops for all vehicles compared to 
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controller 1 in all three demands but controller 2 gives shorter truck delay for 3% and 20% truck 

demands and less number of truck stops for  all three demands.  

We use the CMEM (Comprehensive Model Emission Model) [41] vehicle emission model to 

calculate fuel consumption and emissions in order to compare the average vehicle emissions and 

fuel consumption. As shown in the tables, emissions such as HC, CO, NOx and fuel 

consumption have been improved especially for trucks with the proposed truck priority system 

for both approaches. The results also indicate that giving priority to trucks could result in 

reduced emissions and fuel savings for all vehicles. Controller 1 has a better performance on 

reducing fuel consumption for trucks while controller 2 has a better performance in reducing the 

fuel consumption of all vehicles on the average. Moreover, controller 2 generates less air 

pollution emissions such as CO2 and NOx even though the difference is small and could be 

viewed as being within the modeling error. In summary, both controllers generate a better 

performance that benefits all vehicles involved and has a positive impact on the environment 

with truck priority than without. . 

Table 3:  Road network results (3% Truck) 

 
Fixed 

Time 

Proposed 

Controller 1 
Proposed Controller 2 

W/out 

Priority 
W/ Priority 

W/out 

Priority 
W/ Priority 

Avg. Delay/Veh 

(sec) 
85.4 67.2 59.2 51.5 49.3 

Avg. Delay/Car 

(sec) 
85.1 67.3 59.5 52.2 49.1 

Avg. Delay/Truck 

(sec) 
88.1 65.2 52.1 63.3 55.5 

Avg. Stops/Veh 3.84 2.91 2.73 2.76 2.73 

Avg. Stops/Car 3.93 2.98 2.77 2.77 2.74 

Avg. Stops/Truck 3.8 2.61 1.88 2.50 2.49 

Fuel Trucks (g/km) 452.0 336.0 316.8 362.2 354.7 

Fuel cars (g/km) 137.8 110.1 106.2 95.6 93.2 

Fuel all veh. (g/km) 163.6 132.7 127.2 117.3 115.0 

CO2 Emis. All (g/km) 427.9 347.1 333.0 325.5 316.8 

NOx Emis. All (g/km) 1.01 0.82 0.78 0.80 0.76 
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Table 4:  Road network results (10% Truck) 

 Fixed Time 

Proposed 

Controller 1 
Proposed Controller 2 

W/out 

Priority 
W/ Priority 

W/out 

Priority 
W/ Priority 

Avg. Delay/Veh 

(sec) 
89.0 70.0 67.3 52.7 49.3 

Avg. Delay/Car 

(sec) 
88.7 70.2 67.6 51.6 48.2 

Avg. Delay/Truck 

(sec) 
91.8 68.0 64.1 62.7 59.3 

Avg. Stops/Veh 4 2.95 2.71 2.72 2.67 

Avg. Stops/Car 4.09 3 2.76 2.70 2.65 

Avg. Stops/Truck 3.9 2.65 2.04 2.85 2.82 

Fuel Trucks 

(g/km) 
470.9 350.1 330.0 377.3 369.5 

Fuel cars (g/km) 143.6 114.7 110.7 99.6 97.1 

Fuel all veh. 

(g/km) 
170.5 138.3 132.6 122.2 119.8 

CO2 Emis. All 

(g/km) 
445.8 361.6 346.9 339.1 330.1 

NOx Emis. All 

(g/km) 
1.06 0.86 0.82 0.84 0.80 

 

Table 5:  Road network results (20% Truck) 

 Fixed Time 

Proposed 

Controller 1 
Proposed Controller 2 

W/out 

Priority 
W/ Priority 

W/out 

Priority 
W/ Priority 

Avg. Delay/Veh 

(sec) 
93.4 73.5 59.9 53.8 50.3 

Avg. Delay/Car 

(sec) 
93.1 73.7 60.3 51.8 48.8 

Avg. Delay/Truck 

(sec) 
96.3 71.4 56.6 62.5 56.8 

Avg. Stops/Veh 4.22 3.10 2.82 2.73 2.65 

Avg. Stops/Car 4.31 3.15 2.87 2.68 2.66 

Avg. Stops/Truck 3.96 2.55 2.13 2.95 2.62 

Fuel Trucks (g/km) 494.4 367.6 346.5 396.1 387.9 

Fuel cars (g/km) 150.7 120.4 116.2 104.5 101.9 

Fuel all veh. (g/km) 179.0 145.2 139.2 128.3 125.7 

CO2 Emis. All 

(g/km) 468.0 379.6 364.2 356.0 346.6 

NOx Emis. All 

(g/km) 1.11 0.90 0.86 0.88 0.84 

 

The two controllers have the following differences. 
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 Controller 1 works on the intersection level to make decision while controller 2 works on 

both the network and intersection levels. 

 Controller 1 does not need an online simulator to compute real time control input after 

the training of the NN delay predictor. However, controller 2 needs an online simulator to 

find the baseline signal for active module when the traffic demands change. As a result 

the controller will face a time complexity problem when the controlled road network is 

large scaled. The training of the neural network however may have to be repeated 

occasionally in order to capture changes in the dynamics of the system.  

 Controller 1 could deal with more traffic input scenarios including oversaturated traffic 

flows. The performance of controller 2 under oversaturated traffic flows will be limited 

due to the fact that the simulation time will become significantly longer when the number 

of vehicles in the network is increased. 
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5 Conclusion 
 

In this report, we proposed two truck traffic light priority systems whose performance is demonstrated 

using a microscopic simulation model of an actual road network.  The first system uses a neural 

network approach to predict the average delay of vehicles by taking into account different classes 

of vehicles. The predicted delays are fed into an optimizer which generates the optimum signal 

timing Each intersection has its dedicated delay prediction agent which communicates with 

agents from other nearby intersections of the network in order to share their delay predictions 

and current and future states of the traffic lights. The approach of the second system integrates 

the advantages of passive and active control strategies to achieve better network performance by 

improving traffic delays, reducing the number of stops and emissions in comparison to no-

priority and passive priority strategies. It uses a simulation-based approach to generate the 

predicted states used by an optimization strategy to generate the signal timing at each 

intersection. Both approaches are evaluated using a microscopic traffic simulation model of a 

road and their performance improvements by applying truck priority rules have been 

demonstrated.   
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